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A STUDY OF LIQUIDS BY NEUTRON SCATTERING
by

P. J. Persiani

SUMMARY

Aradial density-distribution function for liquids was
derived with the aid of the assumption that there existed
vibrational modes in the liquid. The distribution function
was obtained only for elastically scattered neutrons.

A study of si(s)curves as a function of temperature,
as well as the energy distribution of the scattered neutrons,
affords a way in which to construct a model describing the
motion of atoms in a liquid.

I. Introduction

Interference effects observed in liquids by the scattering of Xra.ys(1 2)
and low-energy neutrons(3-5) indicate a regularity in the arrangement of the
scatterers extending over several atomic distances from some origin atom.

In the case of X-ray scattering, Zernicke and Prins(6) and Debye
and Menke(7) were the first to derive an expression for the radial density
distribution from a differential scattering cross section based on the model
of a solid composed of infinitely heavy scatterers; that is, temperature ef-
fects were neglected, since the change in the energy of the photon is negli-
gible compared with the incident energy.

When temperature effects and energy transfer are not negligible,
the motion of the scatterers must be considered. In liquids this motion is
not well understood at present. Van Hove(8) has presented a general theory
of scattering for arbitrary particles in which a space- and time-dependent
distribution function is introduced as a Fourier transform of the differential
cross section. For liquids, when the assumption is made that atoms undergo
a diffusive type of motion, in the limit of zero time displacement (static
approximation) the formalism gives the ordinary radial distribution as de-
rived by Zernicke and Prins.

Vineyard(g) and Brockhouse,(lo) using the classical model of diffuse

motion for liquids, have calculated the energy spread of the scattered neu-
trons. Recent experiments(“:lz) with water do not seem to verify this






broadening. Further, if the motion were purely diffuse, as proposed by
Vineyard, the energy distribution of the scattered neutrons should be rather
smooth. However, Hughes et a_l,(lz) and Larsson et a_l.,(13) in contrast to
Brockhouse, report the observation of definite peaks, which indicate quan-
tum effects similar to those used in describing the motion of atoms in a
solid.

The hypothesis that the liquid state may be considered as a poly-
crystalline material has been used fairly successfully by many investiga-
tors in studying specific heats as well as other thermodynamic quantities
of liquids.(14)

Perhaps the diffuse motion of the atoms in a system may be consid-
ered as a cooperative diffusive motion, giving the effect of an oscillatory
motion at some position of equilibrium.

The purpose of this and subsequent papers is to study the structure
of fluids by means of a "quasi-polycrystalline" model for liquids. In other
words, it is assumed that the atoms are in "vibrational motion" for a time
long compared with the time associated with diffuse motion. Any diffusive
motion of the atoms (molecules or aggregates of atoms) is considered as
having a negligible effect on the scattering.

The differential scattering cross section for a system of oscillating
atoms has been explicitly calculated by Zemach and Glauber(15) and by
others.(16) The time- and space-dependent distribution function for this
model has been considered by Van Hove and leads to the above result. In
the present paper, however, the development of the radial density-
distribution function starts with the explicit form of the differential cross
section and is Fourier transformed later in the analysis. This procedure
is essentially that of Zernicke and Prins.

Aside from starting with a differential cross section which involves
temperature effects, the radial distribution obtained in this paper includes
an angle-dependent scattering factor. This factor is usually neglected at
small-angle scattering since it involves the size of the scattering sample,
which is assumed to be large. The derivation in this paper leads to the
small-angle effect which involves the size of the "crystallites" in a poly-
crystalline material rather than the sample size. This means that the
factor manifests its effect at larger angles than is usually expected. Ex-
perimentally, this small-angle scattering is avoided and the intensity is
then extrapolated to zero as the scattering angle approaches zero. The
present analysis suggests that experiments include intensity measurements
at smaller angles than those currently used.






The present paper is concerned with the preliminary analysis and
will involve only zero phonon processes: elastic collisions in which no
energy or momentum has been transferred to the system of scatterers.

The effect of multi-phonon processes, elastic and inelastic, will be treated
in a subsequent paper.

The differential cross section ¢ for a neutron with incident energy
E, (wave vector K,) being scattered by a monoatomic system of vibrating
nuclei about equilibrium positions R, into the elemental solid angle d{2 about
Q0 and into the energy interval dE about E (wave vector K) may be written as
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These cross sections are readily obtained from Zemach and
Glauber's(15) Egs. (3.19) and (3.20) by substituting the generating function
for the summation term in Eq. (3.19), expanding the resulting exponential
in a Taylor Series (phonon expansion), and using
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as the argument of the Bessel function.






The cross sections describe the process in which / phonons
(vibrational energy of frequencies wg and wave vectors qg) are emitted
(ns = -1) or absorbed (n g = +1) by the system of N scatterers after inter-
acting with a neutron whose energy has been changed by AE = E - E,.

The definitions of the remaining terms are as follows: m, is the
neutron mass, m is the mass of the nuclei, u is the reduced mass of the
system, eg is the unit polarization vector of the propagation vector qg,
7 is Planck's constant divided by 217, k, is Boltzmann's constant, and
T is the temperature of the scattering system.

The incoherent scattering length aj,c, due to isotope and spin ef-
fects, and the coherent scattering length acoh are defined as(17)

2 I ¥
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where p; is the abundance of the ith isotope with scattering amplitude a4

for total spin I + %, and aj_ for total spin I - -;— The weighting factors wy
and w_ are
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The exponent in the Debye-Waller intensity factor e 2Wiis given by
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The Debye-Waller factor is a measure of the reduction in the intensity
of the scattered beam due to the thermal motion of the scatterers.

The main features in the analysis leading to the radial density-
distribution function may be presented by considering the zero-phonon
(£=0) process. This is essentially the first-order approximation for an
elastic collision, IEI = |50|. The broadening in the angular distribution of
the elastically scattered neutrons results from phonon processes of higher
order (£=2).

The incoherent and coherent cross sections for £ = 0 reduce to
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In a polycrystalline material, the geometric order of the atoms,
which maximizes the coherent cross section, extends only over the crys-
tallite if the crystallites are randomly oriented. If it be assumed that
the crystallites in the sample to have an effective radius r,, the summa-
tions in the coherent cross section is performed over the atoms within
this distance and then summed over all the crystallite. If NG is the
number of crystallites in the scattering sample and N is the number of
atoms in the crystallite of size r;, then the cross section may be written
as

N N N
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where o, is the angle between the vectors (Ko - K) and (R; - Ryk), and
defines the orientation of the nth crystallite. The effect of random orien-
tation is taken into account by averaging over cos a,. Taking the co-
ordinate axis to coincide with the direction (Ko - K) and with the elemental
solid angle dQ, = 27sinay day, the average of the exponential is

1 a9 eisrik cosap _ sin sTji ’

47 Q, 20! STk

where s = |_I_{0 -K|and Tik = lgj = E_{k|. The averaged coherent differential
cross section becomes
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Summing over j and k, the double summation is written as
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where the first term is for j = k and the second term is the sum over the
distances r.; of the kth atoms from an origin atom j. Since the total number
of atoms in the scattering sample is N = NAN(, the coherent cross section
is then

a 2 Nap-1
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This expression is analogous to that derived by Debye and Menke
for X rays. The relation for X rays w1th isotope and spin effects neglected
may be obtained by replacing ( mu/p,z) a oh With the atomic structure factor
which is dependent on the scattering angle. Aside from the Debye-Waller
intensity factor, another difference is that the above relation is summed
over the interatomic distances within the crystallite rather than over the
whole of the sample.

The summation term is transformed into an integral form by in-
troducing a radial density-distribution function 47p(r) and integrating
over the range of r from zero to the effective radius of the crystallite r,.
For the case of liquids, this effective radius is the extent to which atoms
may be considered as being arranged in some order from an origin atom.
The distribution function is normalized so that

Bl
/ dr 47Trzp(r) = Na,b
r

a

is the number of atoms about an origin atom contained within the spherical
shell having an outer radius ry and an inner radius ry. The coherent cross
section in terms of the radial density-distribution function then becomes

r
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The upper limit of integration may be extended beyond r, by
introducing the average radial density p,, defined as

R
dr 47rp(r)
Po =
B dr 47 r?

0

for large R, or
o= plr) for r=z;

By adding and subtracting the term

r, .
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then, from the above condition the cross section is written as

d0coh mg 2 2w * 2 sin sr
d—Q:FaCOh e N|1 +f dridqrretalio (| N o irim———
0

sr
1 sin sr
+ 47 r?
f & m ,OO sTr
0

With the last term evaluated as

1 ; 4mr3 r
sin sr b 1
f dr 4mr? po——— = —3— Lo P(sry) = N(-g) P(sry)
0

where

sin sr; - sI; COS sT;
o(sr;) =3

(51'1)3

s = K= K| = 2ky sin—i—@

and 6 being the scattering angle, the coherent cross section becomes
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The last term is the small-angle-scattering correction term, at
s~0, ®(sr;)~1. At large scattering angle, ®(sr,) approaches zero and,
depending on the magnitude of r,, the term may be neglected.

The observed differential cross section is the sum of the coherent
and incoherent parts:
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as the total scattering cross section for a bound isolated nucleus, and
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letting

the radial density relation becomes

si(s) =/ dr 47Tr{p(r) = Po} sin sr
()

From the Rieman-Lebesque lemmas,(ls) if

/ dr 47Tr{p(r) - po}

exists and converges absolutely, and further if 47Tr{p(r) = Po} has limited
total fluctuation in the range (0,®) then, as s —= o,

si(s)—0 (l/s)
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With this condition in si(s), the Fourier transform of the si(s)
relation yields the radial density distribution

(o]
47 r? {p(r) = po}:éf ds si(s) sin sr
()

Measurements are made only over finite values of s. To satisfy
the condition on si(s), the usual procedure is to normalize the experimental
data such that at large s, i(s) = 0, or

2 3
d my No r
(d_g) Ss MG i, N(—l) o(sr,)
obs M 4 Ocoh R

The only unknown quantity in this expression is r,. In practice, for
an experimentally realizable s ~12A"! and r; >10A, the last term may be
dropped.

However, the effective size of the crystallites may be obtained from
the data at small-angle (s~0) scattering. Taking the limit of i(s) as s— 0,
then one gets

o .
sin sr

ST

lim i(s) = lim dr 4mr? [p(r) - pol =) ;
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since

/ dr 4mr? [p(r) - pol =0
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The above relation for the differential cross section is then valid
for very small angles. In this limit, the Debye-Waller factor (which is a
function of s2) and ®(sr;) approach unity so that the differential cross sec-

tion becomes
2
() _mo N9on[ o N(ﬂ)’
dQ /g p?  4m 9coh R

If the latter term predominates, the N? intensity behavior is modified
by the crystallite and sample volume ratio.

14
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II. Discussion

The above analysis gives a radial density-distribution relation which
differs from previously and currently used expressions in 2 respects. The
first difference is the inclusion of the Debye-Waller intensity factor, which
results from the assumed vibrational motion of the atoms (temperature ef-
fect). The second difference, independent of the model used in describing
the motion of atoms, is the addition of the term which involves the effects
of small-angle scattering.

An experimental check on the existence or absence of vibrational
modes in liquids is to study the temperature effect on the intensity through
the Debye-Waller factor.






10.

14

12.

13

13

REFERENCES

N. S. Gingrich, Diffraction of X Rays by Liquid Elements, Revs.
Mod. Phys. 15, 90 (January, 1943).

R. W. James, The Optical Principles of the Diffraction of X Rays,
G. Bell and Sons Ltd., London, Vol. II (1954).

O. Chamberlain, Neutron Diffraction in Liquid Sulfur, Lead, and

Bismuth, Phys. Rev. 77, 305 (1950).

P. C. Sharrah and G. P. Smith, Neutron Diffraction of Liquid Pb

and Bi, J. Chem. Phys., 21, 228 (1953).

S. S. Sidhu, L. Heaton, and M. H. Mueller, Neutron Diffraction Tech-
niques and their Applications, Proceedings of the Second United

Nations International Conference on the Peaceful Uses of Atomic
Energy, Geneva, Switzerland, 12, 212 (1958).

F. Zernicke and J. Prins, Die Bengung von Rontgenstrahler in
Flissigkeiten als Effect der Molekilanordnung, Z. Physik, 41, 184

1927).

P. Debye and H. Menke, Bestimmung der Inneren Strukter von
Flussigkeiten mit Rontgenstrahler, Physik Z., SLNT9T (1930).

L. Van Hove, Correlations in Space and Time and Born Approxima-
tion Scattering in Systems of Interacting Particles, Phys. Rev., E,

249 (1954).

G. H. Vineyard, Scattering of Slow Neutrons, Phys. Rev., 110, 999
(1958).

B. N. Brockhouse, Structural Dynamics of Water by Neutron

Spectrometry, Suppl. Nuovo Cimento, 9, 45 (1958).

B. N. Brockhouse, Diffusive Motions in Liquids and Neutron Scattering,
Phys. Rev. Letters, 2, 287 (1959).

D. J. Hughes, H. Palevsky, W. Kley, and E. Tunkelo, Atomic Motions
in Water by Scattering of Neutrons, Phys. Rev., 119, 872 (1960). See

also S. Singivi and A. Sjolander, Diffusive Motions of H,0 in Neutron

Scattering, Phys. Rev., 119, 863 (1960).

K. E. Larsson, S. Holmryd, and K. Otnes, 1S-15, IAEA Symposium
on Inelastic Scattering of Neutrons in Solids and Liquids, Vienna

(October, 1960).






14.

1'5:

16.

17

18.

14

J. D. Bernal and R. H. Fowler, A Theory of Water and Ionic Solution
with Particular Reference to Hydrogen and Hydroxyl lons, J. Chem.

Phys. 1, 515 (1933). J. Leonard Jones and J. A. Pople, Molecular
Association in Liquids, Proc. Roy. Soc., A205, 155, 163, (1951).

A. C. Zemach and R. J. Glauber, Neutron Scattering by Molecules,
Phys. Rev. 101, 118, 129 (1956).

R. Weinstock, Inelastic Scattering of Slow Neutrons, Phys. Rev. 65, 1
(1944). A. Sjolander, Multi-phonon Processes in Slow Neutron Scat-
tering by Crystals, Ark. Fys., 1431 58(1958)8

J. M. Cassels, Progress in Nuclear Physics, Academic Press, Inc.,
New York (1950), Vol. I.

E. T. Whittaker and G. N. Watson, Modern Analysis, Cambridge,
London (1952), p. 172.










